Algèbre linéaire Exemples

Trouver les valeurs propres [[0,1],[2 racine carrée de a,0]]
Étape 1
Définissez la formule pour déterminer l’équation caractéristique .
Étape 2
La matrice d’identité ou matrice d’unité de taille est la matrice carrée avec les uns sur la diagonale principale et les zéros ailleurs.
Étape 3
Remplacez les valeurs connues dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez par .
Étape 3.2
Remplacez par .
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Multipliez par chaque élément de la matrice.
Étape 4.1.2
Simplifiez chaque élément dans la matrice.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Multipliez par .
Étape 4.1.2.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.2.1
Multipliez par .
Étape 4.1.2.2.2
Multipliez par .
Étape 4.1.2.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.3.1
Multipliez par .
Étape 4.1.2.3.2
Multipliez par .
Étape 4.1.2.4
Multipliez par .
Étape 4.2
Additionnez les éléments correspondants.
Étape 4.3
Simplify each element.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Soustrayez de .
Étape 4.3.2
Additionnez et .
Étape 4.3.3
Additionnez et .
Étape 4.3.4
Soustrayez de .
Étape 5
Find the determinant.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 5.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.2.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Déplacez .
Étape 5.2.2.2
Multipliez par .
Étape 5.2.3
Multipliez par .
Étape 5.2.4
Multipliez par .
Étape 5.2.5
Multipliez par .
Étape 6
Définissez le polynôme caractéristique égal à pour déterminer les valeurs propres .
Étape 7
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Ajoutez aux deux côtés de l’équation.
Étape 7.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 7.3
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 7.3.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 7.3.3
La solution complète est le résultat des parties positive et négative de la solution.